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ABSTRACT

Extreme rainfall events, specifically in urban areas, have dramatic impacts on society and can lead to loss of

life and property.Despite these hazards, little is known about the city-scale variability of heavy rainfall events.

In the current study, gridded stage IV radar data from 2002 to 2015 are employed to investigate the clustering

and the spatial variability of simultaneous rainfall exceedances in the greater New York area. Multivariate

clustering based on partitioning around medoids is applied to the extreme rainfall events’ average intensity

and areal extent for the 1- and 24-h accumulated rainfall during winter (December–February) and summer

(June–August) seasons. The atmospheric teleconnections of the daily extreme event for winter and summer

are investigated using compositing of ERA-Interim. For both 1- and 24-h durations, the winter season ex-

treme rainfall events have larger areal extent than the summer season extreme rainfall events.Winter extreme

events are associated with deep and organized circulation patterns that lead to more areal extent, and the

summer events are associated with localized frontal systems that lead to smaller areal extents. The average

intensities of the 1-h extreme rainfall events in summer aremuch higher than the average intensities of the 1-h

extreme rainfall events in winter.A clear spatial demarcation exists within the five boroughs inNewYorkCity

for winter extreme events. Resultant georeferenced cluster maps can be extremely useful in risk analysis and

green infrastructures planning as well as sewer systems’ management at the city scale.

1. Introduction

Urban hydrologic engineering relies on the estima-

tion of design storms for specific durations and return

periods. These design storms are based on historical

precipitation records for the region of interest.
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Intensity–duration–frequency (IDF) curves are de-

veloped for precipitation and applied to the design of

drainage system elements such as sewers, culverts, or

control elements such as detention basins (Chow et al.

1988; Kothyari and Grade 1992; Madsen et al. 2009;

Simonovic and Peck 2009). Under the IDF curve ap-

proach, typically a single curve interpolated from rain

gauges in the area is applied to a catchment (Hershfield

1963). The extreme events are assumed to be in-

dependent in time, and the design estimates for each lo-

cation are computed separately without a spatial

dependence structure. However, the spatial variability of

rainfall, especially for smaller catchments and shorter

durations, is often identified as the primary source of

error in investigations of rainfall–runoff processes and

hydrologicalmodeling (O’Loughlin et al. 1996; Syed et al.

2003). This issue is particularly important for a dense

urban area likeNewYorkCity (NYC), which operates on

combined sewer systems, that is, the rainwater and street

runoff along with the sanitary and industrial wastewater

are collected in the same sewer and conveyed to treat-

ment plants (NYCDEP 2013).

Much of the storm water flows over impervious sur-

faces into catch basins in the streets and to sewers. Storm

water can pose significant challenges to cities in the form

of flooding and combined sewer overflows. The com-

bined sewer overflows and storm discharges vary spa-

tially because of the spatial variations in rainfall and can

hence influence the quality of the water bodies to sup-

port recreational uses in waterways and nearby beaches.

Scenarios that properly address the associated spatial

patterns of rainfall can help improve the operation of

these systems and the assessment of system perfor-

mance, especially as drainage network modifications are

considered. Rainfall observations used to develop such

scenarios are currently limited spatially by the relatively

sparse distribution of rain gauges. With advances in

weather radar technologies, a very high-resolution spa-

tial dataset for precipitation is available for most of the

United States. A big difference between rain gauges and

radar is the punctual-to-areal information, that is, radars

are providing gridded spatially distributed rainfall

products. These spatial fields can provide a basis for

properly understanding the clustering and distributional

properties of rainfall intensity, timing, and areal extent.

These data can be used for developing stochastic sce-

narios to evaluate the critical links in an urban hydro-

logic network and consequently improving the design

parameters and operations of these systems, including

the component drainage elements and storm water

control elements. They can also be used to perform as-

sessments on system vulnerability to local and wide-

spread flooding.

In this paper, we explore the spatial variability of two

significant attributes of extreme rainfall events over the

greater New York (GNY) area (Fig. 1): the simulta-

neous areal extent, that is, the grids that have rainfall

exceeding a threshold at the same time, and their aver-

age intensity by applying the partitioning around me-

doids (PAM) clustering algorithm (Kaufman and

Rousseeuw 1990) on radar rainfall data. Since these

extreme events impact specific regions and the physical

FIG. 1. Study area: GNY and the five boroughs of NYC.
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processes associated with them vary considerably by

location and timing, we focus on understanding the

spatial manifestation of these event attributes for spec-

ified durations and connecting them to synoptic-scale

atmospheric precursors (e.g., circulation patterns and

their characteristics). While the spatial structure of ex-

treme rainfall has been explored over large areas (e.g.,

Tetzlaff and Uhlenbrook 2005; Jones and Carvalho

2012; Bernard et al. 2013; Stevenson and Schumacher

2014), research on the spatial structure of extreme

events at rainfall time scales that are critical for urban

drainage network evaluation has been limited (Berne

et al. 2004; Smith et al. 2012; Wright et al. 2014; Zhang

et al. 2014). Furthermore, no literature was found that

looked at the areas covered by extreme rainfall and their

joint dependence with the intensities and time of oc-

currence for a specific duration at these scales.

For extreme rainfall of a specified duration, we have

considered the partial duration series with events that

exceed the 90th percentile of all rainfall at a given grid.

We have considered 1- and 24-h accumulations to rep-

resent the short- and long-duration rainfall events and

seasons of December–February (DJF) and June–

August (JJA) to represent winter and summer events,

and we used the Next Generation Weather Radar

(NEXRAD) hourly weather radar data to identify the

extreme rainfall partial duration series. The total area

associated with simultaneous exceedance of the 90th

percentile is then recorded. For each rainfall duration of

1 and 24h, and for winter and summer seasons, we are

interested in exploring whether there are significant

spatially organized clusters in the intensity and areal

extent (number of grids exceeding a threshold at the

same time). We employ the PAM classifying algorithm

to assess the congruence in spatial characteristics and to

validate them with reported extreme events in the re-

gion using the NOAA Storm Events Database (NOAA/

NCEI 2016). The causal factors, that is, the storm

mechanisms associated with the clusters for different

seasons, are explored in brief in this paper using com-

positing analysis on ERA-Interim data.

The rest of the paper is organized as follows. The

NEXRAD data used in the study and the extreme event

identification process are described in section 2. The

clustering analysis details and results along with the

analysis on atmospheric teleconnections are presented

in section 3. In section 4, we present the summary and

conclusions.

2. Description and processing of radar rainfall data

The NEXRAD system comprises 160 Weather Sur-

veillance Radar-1988 Doppler (WSR-88D) sites installed

throughout the United States and at selected overseas

locations (Heiss et al. 1990). Maximum coverage ra-

dius of single radar is 250 nautical miles (;460 km).

TheWSR-88D continuously collects reflectivity, radial

velocity, and spectrum-width base data. These three

meteorological quantities are used to generate hy-

drometeorological products, which are subsequently

mapped onto the polar stereographic projection called

Hydrologic Rainfall Analysis Project (HRAP; Fulton

et al. 1998). An integral part of the precipitation de-

termination algorithms is the ability to dynamically

apply the appropriate reflectivity factor Z and rainfall

rate R relationship [suggested by Marshall and Palmer

(1948); Joss and Waldvogel (1970); Woodley et al.

(1975)] with respect to the type of precipitation (e.g.,

convective or stratiform). While single radar records

may suffer from a blockage at certain locations

(Vivekanandan et al. 1999; Lang et al. 2009) as well as

range limitations, multisensor (gauge, radar, and sat-

ellite) products minimize these errors (Miller et al.

2010). Multisensor precipitation estimator (MPE) al-

gorithms provide a real-time suite of gridded radar

products at different spatial scales and stages (Hudlow

1988; Vasiloff et al. 2007; Kitzmiller et al. 2013). We

refer the readers to Nelson et al. (2010) for more de-

tails on weather radars.

In this study, the National Centers for Environmental

Prediction (NCEP) stage IV radar product [archived in

Gridded Binary (GRIB) format; see WMO (2003)] is

employed to produce extreme rainfall fields over the

GNY region. Stage IV radar data are a mosaic of the

regional multisensor precipitation from all 12 National

Weather Service (NWS) River Forecast Centers

(RFCs), together with calibration and adjustment for

different biases using automatic rain gauge measure-

ment and quality-control processes (Lin and Mitchell

2005). However, stage IV data have a bias for big

snowfall events, especially in the east since the RFC

stations in the eastern United States do not derive the

liquid equivalent precipitation for snow (http://data.eol.

ucar.edu). Owing to this factor, the stage IV data in the

northeastern United States are exclusively rainfall data.

The data comprise 11213 881 pixels covering the entire

continental United States with the spatial resolution of

4 km3 4 km and a temporal resolution of 1 h. The 1- and

24-h rainfall radar data are provided by NCEP and are

available from the Earth Observing Laboratory (EOL)

from 2002 to present with a UTC time stamp. While

higher-resolution products are also available for urban

areas (e.g., NEXRAD Q2 and Q3 are available at

1 km 3 1 km resolution), they are only archived from

2010. In this study, we used 14 years of stage IV data

from 2002 to 2015 to give us as much temporal coverage
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as possible. The 24-h data (1200–1200 UTC) are accu-

mulated from the 6-hourly data (Fulton et al. 1998). The

probability distribution of rainfall obtained from the

radar data conforms well to the probability distribution

of the rainfall data obtained from the corresponding rain

gauge at John F. Kennedy International Airport, NYC

(COOP ID 305803). Zhou (2008) compared radar esti-

mates with rain gauge records in the NYC and Long

Island area and showed that at the annual scale, there is

little difference between the radar-derived estimates

and gauge observations. Allen and DeGaetano (2005)

conducted an analysis over the northeastern United

States and showed that for extreme precipitation, the

areal reduction factors (ARFs) at large spatial scales are

similar while independent differences exist between

radar ARFs and rain gauge ARFs.

The stage IV data we obtained were further processed

as follows to compute the total areal extent and average

intensity of the extreme rainfall events.

1) The 1-h (accumulated over short duration) and 24-h

(accumulated over long duration) rainfall events

were identified for the GNY area, which includes

2612 radar grids from the above dataset.

2) The 90th percentile R90 of the rainfall was deter-

mined at each grid box for each of the 1- and 24-h

durations.

3) We then look through all 122 688 h (5112 days) in the

14-yr record and process the 1 (24)-h rainfall data to

identify the rainfall in a grid box that exceeds the

estimated R90 for that grid box in that hour (day).

This process identifies multiple grids across GNY for

each hour (day) that meets the criteria of extreme

rainfall events. This resulted in a total of 13 258

extreme event hours for the 1-h duration and 1177

extreme event days for the 24-h duration. Among the

13 258 extreme event hours for the 1-h duration, we

identify 1401 extreme event hours for the winter

season (DJF) and 6316 extreme event hours for the

summer season (JJA). Similarly, among the 1177

event days for the 24-h duration, we identify 170

extreme event days for DJF and 487 extreme event

days for JJA. Figure 2 schematically indicates an

extreme event’s field development applying an ar-

bitrary threshold.

4) For each rainfall duration of 1 and 24h, the total area

Ai, for the ith event that exceeds the R90, and the

corresponding average intensity Ii was recorded.

The clustering in the distribution of Ai and Ii for

the winter extreme events (DJF) and summer ex-

treme events (JJA) are then investigated using the

PAM approach. We chose winter (DJF) to represent

the rainfall associated with extratropical cyclones

and nor’easters and summer (JJA) to represent

rainfall associated with convective storms and hurri-

canes. Both these seasons are considered important

for hazard management in NYC (http://www.nyc.

gov/html/oem/html/hazards/storms.shtml).

3. Classification of extreme rainfall events’ areal
extent and intensity

a. PAM clustering analysis

Clustering analysis provides an objective way to

classify extreme events into subcategories depending on

the multivariate dependence between the variables. The

classification can then be linked to the geographic lo-

cations to understand the spatial contiguity of the

events. A variety of methods for classifying vector data

are available. We use the PAM algorithm proposed by

Kaufman and Rousseeuw (1990) with a vector of two

attributes (Ai and Ii) per event. This classification is very

similar to the k-means approach (MacQueen 1967),

which partitions the data into k clusters by maximizing

the variance across clusters and minimizing the total

distance within the cluster. However, the k-means ap-

proach represents each cluster center by its mean and

does best at identifying the Gaussian mixture data dis-

tribution (Bernard et al. 2013), while the PAM

FIG. 2. Schematic procedure of generating extreme rainfall field from radar rainfall data.
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algorithm looks for representative objects, medoids,

and minimizes the sum of dissimilarities between the

points in the cluster and the medoids. Therefore, the

distribution of attribute vector remains unchanged,

and no smoothing is performed within PAM. The op-

timal number of clusters is determined by the maxi-

mum mean and minimum number of negative

silhouette values. A silhouette is a measure of how

cohesive each cluster is and how well the clusters are

separated. For n total points in the clusters, a silhou-

ette Sn is defined as

S
n
5

b
n
2 a

n

max(b
n
, a

n
)
, (1)

where an is the average distance from the nth point to

the other points within the cluster to which n belongs

and bn is the average distance between the nth point to

points in another cluster (Rousseeuw 1987; Kaufman

and Rousseeuw 1990). Values of the silhouette range

from 21 to 11. Clusters with high mean silhouette

values are cohesive, and negative silhouette values are

possible misclassifications. Hong et al. (2004) and

Behrangi et al. (2009, 2010) have employed similar

classification approaches for Precipitation Estimation

from Remotely Sensed Information Using Artificial

Neural Networks–Cloud Classification System to derive

finescale rain rates. Figure 3 presents the schematic of

the approach used to identify the clusters. For each of

the 2612 radar grids in the GNY area, we assign the

probability of falling within a cluster as follows:

P(C
ij
) 5

n
ij

N
j

, (2)

where P(Cij) represents the probability of assigning

cluster i to grid j, nij is the number of events of grid j that

are in cluster i, and Nj is the number of events of grid j.

Accordingly, if all the events (none of the events) of a

grid are grouped in a particular cluster i, then the

probability of assigning cluster i to the grid is 1 (0). This

way, we essentially understand the properties of a grid

regarding their likelihood of experiencing either high-

intensity, large-areal-extent events or otherwise.

b. Clustering results

Figure 4 presents the mean silhouette values as a

function of the number of clusters. We find the mean

silhouette values to be optimal at two clusters for both

the 1- and 24-h durations for the winter and summer

data. The optimal silhouette values are reported in

Table 1. To ensure that the separation in clusters is

statistically significant, we performed detailed non-

parametric hypothesis tests (Hamill 1999) on both in-

tensity and areal extent by testing the null hypothesis

that the means of the clusters are equal. The clusters

have different sample sizes (see Table 1). With random

variable X denoting cluster 1 and Y denoting cluster 2,

the null hypothesis H0 and the alternate hypothesis HA

for the test are defined as

H
0
: X2Y5 0 and (3)

H
A
: X2Y 6¼ 0, (4)

where X and Y denote the means. The distribution of

the null hypothesis (X� 2Y�) is constructed by in-

dependently drawing samples (with replacement)

from clusters X and Y based on the bootstrap resam-

pling approach (Efron 1979; Efron and Tibshirani

1993). The central idea behind this is to sample with

replacement from a pool of data using the underlying

distribution that generated the data to guide the sam-

pling process. In other words, the sampling charac-

teristics of a statistic of interest can be simulated by

repeatedly treating a single available batch of data in a

way that mimics the process of sampling from the

parent population. We prefer the nonparametric

FIG. 3. Attribute vector preparation and clustering approach; for each event, corresponding area, and average intensity are developed as

input variables of clustering analysis.
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approach to the traditional parametric hypothesis

tests, as it has the flexibility of treating unequal sam-

ples sizes easily and does not need any assumptions on

the underlying data distribution. A total of 10 000 es-

timates of X* and Y* are obtained to develop the null

distribution for each test. The percentiles at which the

observed test statistic has fallen in the constructed null

distribution are computed. For a one-sided hypothesis

test, if the percentile of the observed test statistic

(X2Y) is between 0.90 and 1, then the mean of cluster

Y is lower than the cluster X at a 90% statistical sig-

nificance interval. Alternately, if the observed test

statistic is between 0 and 0.1, then cluster X is signifi-

cantly lower than cluster Y at the 90% confidence in-

terval. Results from the hypothesis test, the percentile

of the observed test statistics on the constructed null

distribution, are provided in Table 1, and we identify

statistically significant separation in clusters. Cluster 1

TABLE 1. Silhouette values and hypotheses test results from the PAM clustering analysis (K 5 2) for different rainfall durations.

Timing

Sample size

Silhouette coef p value (intensity) p value (areal extent)Cluster 1 Cluster 2

1-h rainfall duration

DJF 1277 124 0.8 ,0.1 ,0.1

JJA 4922 1394 0.85 ,0.1 ,0.1

24-h rainfall duration

DJF 146 24 0.8 ,0.1 ,0.1

JJA 451 36 0.82 ,0.1 ,0.1

FIG. 4. Mean silhouette coefficient from the clustering analysis; K 5 2 is the optimum.
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is significantly lower than cluster 2 at the 90%

significance level.

1) RESULTS FOR 1-H EVENTS

The outputs of average intensity and areal extent for

the 1-h events are presented in Fig. 5, with the scatter-

plots showing the joint distribution and the box plots

showing themarginal distributions. In each of the winter

(DJF) and summer (JJA) seasons, cluster 1 (in red)

corresponds to events with low average intensity and

small areal extent and cluster 2 (in blue) corresponds to

events with high average intensity and large areal extent.

From Fig. 5, we observe that for the short duration (1 h),

the summer events have higher average rainfall in-

tensities than the winter events. From Fig. 5a, we can

observe that the median average intensity of the 1277

winter events in cluster 1 is 7.5mmh21. The median

areal extent of these events is 20 grids (;320 km2). The

median average intensity of the 124 winter events in

cluster 2 is 9.5mmh21. The median areal extent of these

events is 500 grids (;8000km2). Similarly, from Fig. 5b,

we can observe that the median average intensity of the

4922 summer events in cluster 1 is 8.5mmh21 and the

median areal extent is 15 grids (;240km2). The median

average intensity of the 1324 summer events in cluster 2

is 15mmh21 and the median areal extent is 150 grids

(;2400km2).

Figure 6 presents the spatial distribution (georefer-

encing) of the probability of assigning cluster 2 for the

five boroughs in NYC for the 1-h events. As described

earlier, we compute the probability of assigning cluster 2

as the number of events of grid j that are in cluster 2

divided by Nj, the number of events of grid j. Blue color

in the map indicates that the probability of assigning

cluster 2 to the grid is close to 1 in that season. This

implies that most of the events of the grid are grouped in

cluster 2 (high intensity and large areal extent), an in-

dication that this grid has a higher likelihood of expe-

riencing extreme rainfall events with high intensity and

large areal extent in that season. On the other hand, a

red color indicates that the probability of assigning

cluster 2 is close to 0, implying that most of the events of

the grids are grouped in cluster 1, indicating a lower

likelihood of experiencing high-intensity, large-areal-

extent extreme events. We can see a clear west-to-east

gradient in the spatial distribution of cluster 2 for the 1-h

winter extreme events (Fig. 6a), indicating that the grids

west of NYC are associated with low intensity and small

areal extent, while the grids east of NYC are associated

with high intensity and large areal extent for short-

duration winter events. Figure 6c, which shows the box

plots of the spatial distribution of the probability of

cluster 2, provides a closer look at the five NYC bor-

oughs (also see Fig. 1) for the winter events. We see that

the borough of Queens (fourth box from the left) has

increased likelihood of high-intensity and large-areal-

extent short-duration extreme events during winter,

compared to the other boroughs. We also observe that,

while Manhattan, Bronx, Brooklyn, and Queens have a

probability greater than 0.5, the borough of Staten Is-

land has a lower probability for cluster 2 (median is

around 0.42), indicating a higher likelihood of events

associated with low intensity and small areal extent.

The summer 1-h extreme events (Fig. 6b) are more

homogenous, and much of the NYC area experiences

high-intensity and large-areal-extent events. Figure 6d

(box plots of the spatial distribution of the probability of

cluster 2 in the five NYC boroughs for the summer) in-

dicates that all the boroughs have a higher probability of

cluster 2. It is important to realize that the median areal

FIG. 5. Results of clustering analysis for the 1-h extreme rainfall data for (a) DJF and (b) JJA. Red and blue colors

represent clusters 1 and 2, respectively.
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extent in cluster 2 during winter is larger than the me-

dian areal extent in cluster 2 during summer. On the

other hand, the average intensity in cluster 2 during

winter is much lower than the average intensity in

cluster 2 during summer (Fig. 5). This indicates that the

winter 1-h extreme events seen in cluster 2 are associ-

ated with higher areal extent (a manifestation of

synoptic-scale organized storms) compared to the

events seen in cluster 2 during summer (a manifestation

of more localized convective storms). However, the

summer events have greater intensity.

2) RESULTS FOR 24-H EVENTS

The outputs of average intensity and areal extent for

the 24-h events are presented in Figs. 7a and 7b. A pe-

rusal of the clusters in winter and summer seasons in-

dicates that the average intensities of the events in

cluster 2 are similar across seasons with a median aver-

age intensity of 1.5 mmh21. The median average in-

tensity of the winter events in cluster 1 (1.2mmh21) is

lower than the median average intensity of the summer

events in cluster 1 (1.4mmh21). The areal extent of

the winter events in cluster 2 (median is around 2000

grids, ;32 000 km2) are larger than the areal extent of

summer events in cluster 2 (median is around 1200

grids,;19 200 km2), while the areal extents of the events

in cluster 1 for winter and summer are comparable.

Figure 8 presents the spatial distribution (georefer-

encing) and the corresponding box plots of the proba-

bility of assigning cluster 2 for the five boroughs in NYC

for the 24-h events. We can again notice that for the

winter season, the five boroughs exhibit a higher likeli-

hood of having 24-h extreme events with high intensity

and large areal extent. Individual differences between

boroughs exist, with Queens and the Bronx having the

highest probabilities and Staten Island and Brooklyn

having lower probabilities. On the other hand, for the

summer 24-h extreme events, we find that the proba-

bility of falling in cluster 2 is around 0.5 for all the bor-

oughs, making them indistinguishable from random

chance. In other words, the 24-h extreme events in these

boroughs during summer are mixed between high

FIG. 6. Spatial distribution of the probability of cluster 2 for the 1-h extreme events over NYC in (a) DJF and

(b) JJA. The box plots of the probabilities for the five NYC boroughs are also presented for (c) DJF and (d) JJA.
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intensity, large areal extent (possible tropical storm and

hurricane induced events) and low intensity, small areal

extent (possible localized convective storms).

c. Atmospheric teleconnections

In this section, we investigate the meteorological

context and the conditions that lead to large areal extent

(cluster 2) 24-h extreme events for the GNY area for

both winter and summer seasons. Large-areal-extent

events may be associated with organized transport of

moisture to the region. Hence, we examine the synoptic-

scale weather anomalies associated with the events un-

der cluster 2. To do this, we generate composites, using

ERA-Interim data (Dee et al. 2011). The composites

show the sea level pressure (SLP) and 2-m temperature

anomalies. The anomalies are with respect to daily

means for 1979–2012, which have been smoothed with a

5-day running mean. SLP provides insights into the cir-

culation patterns and storm strength, while 2-m tem-

perature can help show the importance of advection

and/or fronts. Figure 9a shows the composite for the

winter season (DJF) based on the 24 events that were

classified into cluster 2 under winter. The composite SLP

field shows a deep, closed-low circulation typical of ex-

tratropical cyclones that generate winter precipitation in

the region. The 2-m temperature anomaly shows a di-

pole of warm and cold anomalies, suggestive of the

warm and cold advection generated by the storms. The

SLP contours and temperature anomalies are not col-

located in the manner observed in individual storms.We

interpret this to be a bias introduced by the compositing

analysis, partially related to the SLP being full fields and

the 2-m temperature being anomalies. The important

result in this figure is the identification of the stormlike

synoptic pattern expected during winter. The upper-level

circulation moving eastward is reinforced by the sur-

face low and from cold air moving from the south.

Moisture is picked up from the ocean surface and the

system moves along the coast of the mid-Atlantic and

causes precipitation due to horizontal convergence

(Miller and Frederick 1969).

We further verified these results using the NOAA

Storm Events Database, which contains continental-

scale records of the occurrence of storms (from 1950

to present) and other significant weather phenomena

having sufficient intensity to cause loss of life, injuries,

significant property damage, and disruption to com-

merce (NOAA/NCEI 2016). From the 24 events in

winter classified under cluster 2, we found 14 unique

episodes and 28 recorded storm events in the GNY area.

An episode is defined as an entire storm system that

contains many different types of events. An event is

defined as an individual type of storm event, such as

thunderstorm, flood, tornado, wind hurricane, etc. An

investigation into the episode narratives revealed that

many of these episodes were associated with low pres-

sure systems that developed along the Gulf Coast states

or in the Tennessee Valley and moved toward the

Northeast, causing intense rain or winter weather; a few

episodes were associated with slow-moving frontal sys-

tems that moved from theOhio Valley and northeastern

Missouri into the GNY region.

For the JJA cases, the heavy precipitation events are

most likely caused by frontal storms (Lombardo and

Colle 2010), and there is a chance that tropical storms

or hurricanes also generated some of the extreme

events. To identify the tropical storm events, we adapt a

storm association method of Booth et al. (2015), using

HURDAT2 (Landsea and Franklin 2013), to identify

tropical storm tracks that pass within 1000km of NYC

FIG. 7. Results of clustering analysis for the 24-h extreme rainfall data for (a) DJF and (b) JJA. Red and blue colors

represent clusters 1 and 2, respectively.
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during the dates of the 36 events in the JJA cluster 2 for

24-h precipitation. We find that four events are either

hurricanes or post-tropical storms. Figure 7b shows the

composite for the 36 events from JJA, including the

four storms with tropical origins (also reported here:

http://www.weather.gov/okx/HistoricFlooding_081314).

The SLP contours show a weak closed low, typical of

summertime frontal storms in the Northeast (Lombardo

and Colle 2010). The 2-m temperature anomaly shows a

gradient that is oriented in the southwest-to-northeast

FIG. 9. Composites for cluster 2 events of 24-h extreme rainfall events for (a) DJF and (b) JJA. Contours show the

SLP (contour intervals: 2.5 hPa, boldface contours are labeled). Shading shows the 2-m temperature anomaly.

FIG. 8. Spatial distribution of the probability of cluster 2 for the 24-h extreme events over NYC in (a) DJF and

(b) JJA. The box plots of the probabilities for the five NYC boroughs are also presented for (c) DJF and (d) JJA.
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direction, indicative of a cold front, suggesting that these

are indeed summertime frontal storms. The gradient in

the temperature anomaly field hugs the coastline, and

therefore one could assume that the composites are

simply capturing a land–sea temperature difference.

However, during summer the temperatures of the land

and ocean in the climatology are nearly equal, with the

land being slightly warmer. Therefore, the anomaly

pattern is more likely related to the synoptic structure of

summertime frontal storm events. For the summer

events, we identified 13 unique episodes and 37 recorded

storm events from the NOAA Storm Events Database.

Hurricane Irene and Tropical Storm Andrea stand out

in these episodes as the major ones; the rest of the epi-

sodes are associated with localized thunderstorms that

developed along the stationary warm fronts in the re-

gion. Taken together, the composites for winter and

summer show that, for cluster 2 of the 24-h extreme

rainfall events, our analysis of the radar precipitation

extremes can be identified with the archetypal storms at

the synoptic scale (e.g., Kunkel et al. 2012).

4. Summary and conclusions

Urban hydrologic systems exist at the interface between

natural processes and human impacts. An improved rep-

resentation of the critical forcing of these systems by

meteorological and climatic processes is an essential as-

pect of predicting the functioning of such systems, espe-

cially as drainage network modifications are considered.

Moreover, knowledge on extreme events’ areal scaling

helps in developing improved risk and performance

analysis techniques for urbanwater systems. In this regard

we embarked on classifying rainfall extremes based on

high-resolution radar rainfall data, exploring the spatial

variability at the urban scale, and relating these classifi-

cations to synoptic circulation patterns. We first develop

spatial fields of extreme rainfall events and compute the

average intensity and areal extent of the events for short-

duration (1h) and long-duration (24h) during winter

(DJF) and summer (JJA) seasons.We developed a simple

and effective probabilistic classification approach (PAM-

based event classification and spatial attribution using

probability of occurrence) for these extreme rainfall

events and attempted to understand areal coverage by

extreme rainfall and its joint dependence with the in-

tensities and time of occurrence. We also investigated the

relationships of the classified 24-h events with synoptic

circulation patterns and validated them with the storm

event database. Following are the main findings:

1) For the 1-h duration, the summer extreme events

have higher average rainfall intensities than the

winter extreme events.

2) The areal extent of the high-intensity 1-h extreme

rainfall events during winter is larger than the areal

extent of the high-intensity 1-h extreme events

during summer.

3) In NYC, during winter, the borough of Queens has

the highest likelihood of experiencing large-areal-

extent, high-intensity 1-h extreme events while

the borough of Staten Island predominantly ex-

periences low-intensity, small-areal-extent 1-h

extreme events.

4) For the 24-h duration, the summer extreme events and

the winter extreme events have similar intensities.

5) The areal extent of the 24-h extreme rainfall events

during winter is larger than the areal extent of the

24-h extreme rainfall events during summer.

6) In NYC, during summer, all the boroughs have equal

probability of experiencing high-intensity, large-

areal-extent extreme events and low-intensity, small-

areal-extent 24-h extreme events.

7) Investigation into the relationships of the 24-h high-

intensity classified events reveals that the winter

events are associated with deep and organized circu-

lation patterns that lead to more areal extent and the

summer events are a manifestation of localized

frontal systems, hence leading to smaller areal

extents.

Our future work in this direction, building on these

findings, will involve using the rainfall extreme fields in

conjunction with concurrent synoptic-scale atmospheric

circulation patterns to develop spatially distributed

stochastic scenarios for urban flood risk estimation and

producing coherent flood exceedance maps at the urban

scale. We are also focusing on linking the frequency of

incidence of these urban precipitation fields to regime-

like behaviors seen in large-scale climate precursors

(e.g., North Atlantic Oscillation) in order to address

some notable gaps in understanding how rainfall pro-

cesses are manifested in space and time and change with

climate.
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